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ABSTRACT

A generalized critical point
is characterized by the vanishing
of certain linear relationships.

• In particular, the dynamics near
such a point are completely non-
linear....441I~ this paper,.—we).ana1yze~fluctuations at such points of
spatially homogeneous systems.

jhermodynamic critical

~~~~~~~~~ 

_ .‘
~~~~~~c ” - ’~ 

points~as a special case; but the
main emphasis is on stochastic
kinetic equations . We- show that—,--
~1uctuations at a critical point
cannot be cha,~acterized by a
Gaussian den~ity, but more
sophisticated dens~~ ies yield
reasonable results. ~‘~Qe�. theory
is applied to the critical
harmonic oscillator.~~~~~~~~~~
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UNIFORM TREATMENT OF FLUCTUATIONS AT CRITICAL POINTS

SECTION 1. INTRODUCTION

A generalized critical point can be characterized by the

vanishing of certain linear relationships. Such a point may be

thermodynamic or kinetic. For example , at the liquid-vapor tran-

sition temperature , it is well known that

T
~

In general , if ~(x) is some generalized potential and •(O) = 0

then the Onsager theory of non—equilibrium processes indicates that

perturbations from x = 0 evolve according to

x = — L ~~~~ . (1.2)

In the vicinity of equilibrium , Xeq~ since •‘(X5q) = 0 ,

•“ (x ) ( x — x  )2
$ CX ) = 

~eq + 
eq 

2 
eq 

+ • • •  (1. 3)

Defining i/x=~
” (Xeq) to be the recriprocal of a “susceptibility ”

we find

x = 
~ 

(X_X
5q) + ~ (

(x_x eq) 2) . (1.4)

1
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At a generalized critical point , $“ = 0. Hence the dynamics in the

vicinity ~f a critical point are highly nonlinear. Namely , one must

use extra terms in the Taylor expansion (1.3), and obtain non-

linear dynamics at the critical point. -

In this paper , we consider thermodynamic and kinetic critical

points. As the term is usually used, “critical point” refers to a

point in parameter space that is characterized by i) a slowing

down of the dynamics and ii) long range spatial correlations. In

this paper, we do not consider the long range order , but restrict

the problem to spatially homogeneous systems, so that only critical

slowing down will be evidenced. These equilibria (thermodynamic

case) or steady states (kinetic case) are characterized by non-

linear dynamics. This point is given much emphasis in the paper.

Due to the nonlinear dynamics the analysis of systems near critical

points is quite difficult. Some analysis has been done, by Kubo

et. al. (1) and Nitzan et. al. (2). In the first paper, two types

of critical steady states were defined for one dimensional systems.

We briefly review these. Let x=0 be the steady state. The steady

state is of the marginal type (1) if perturbations from x=O behave as

x “~ tx2. (1.5)

i
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The origin is a critical type steady state(l) if perturbations

from x=0 behave as

~~ . (1.6)

j 
-

Recently , the terminology of Kubo et. al. has been generalized to

multidimensional systems(3). The paper of Nitzan et. al.(2) is

contained as a special case of this paper and the accompanying

one(4).

In this paper , we will analyze fluctuations at critical

points. Often one reads that fluctuations “become unbounded” or

“grow anomalouely” at critical points. These statements are meant

in the following sense: if one tries to describe fluctuations at
I

a critical point by a Gaussian approximation , then the second

moment <x 2> is infinite. We will show that the Gaussian descrip-

tion of fluctuations implicitly assumes linear dynamics. Since

critical point dynamics are nonlinear , one should not expect the

Gaussian approximation to be valid. Hence, the anomaly is not in

the physics , but in the improper use of mathematical approxima—

tions. We show that although the Gaussian approximation is not

valid, more complicated densities are appropriate. The technique

to demonstrate this will utilize formal asymptotic methods.

Our results are analogous to problems in optics (at a caustic)

and wave mechanics (at a classical turning point). In those cases,

the geometrical optics and WKB solutionà break down, yielding

3
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infinite amplitudes. In reality , the intensity of light at a

caustic is not infinite, but is large(5) . At a caustic, geo—

metrical optics mus t be replaced by Airy or Pearcey integrals(5,6 ) .

Similar analyses hold at the classical turning point ( e . g . ( 7 ) , ( 8 ) ) .

In §2 , we give the uniform treatment of fluctuations at the

thermodynamic critical point of a homogeneous system. As an

— example , we calculate volume fluctuations of van der Waals gas at

the critical point. Our theory is equiva1ei~t to the classical

theory of phase transitions(8) . The main focus of this paper , how-

ever , is kinetic critical points , which have a much richer dynamical

behavior. In §3 , we introduce the stochastic kinetic equation and

diffusion approximation. The theory given here is a variation

of the mode-mode coupling theory ( 10). We discuss a possible resolu-

tion of the present controversy regarding a “proper ” expansion of

the Mas ter ~~uation to obtain a Fokker-Planck equation(ll) . A small

parameter arises in the derivation of the diffusion approximation ;

it characterizes the intensity of fluctuations. The f luctuations

are characterized by a density that satisfies the forward or Fokker—

Planck equation. In this paper, techniques for the construction of

solutions of the forward equation are given when the underlying

deterministic dynamics exhibit critical behavoir. In §4 we de-

rive solutions of the one dimensional time invariant Fokker-Planck

equation. We obtain an exact result, which is then analyzed

by asymptotic methods. We obtain a Gaussian density at a

r -

4 
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non-critical steady state , an Airy density at a marginal type

steady state , and a Pearcey density at a critical type steady

L .ate . In §5 , these densities are used in a general ansatz (“ ray

method”(l2)) to provide asymptotic solutions of the time dependent

multidimensional Fokker-Planck equation. We construct densities in

which susceptibilities (i.e. first derivatives) at the critical

point are large , but finite. The same result applies to variances.

In §6 , we show how our results can be used to construct time-

dependent correlation functions. In §7 , we discuss an example of

the critical harmonic oscillator(l3) and show how the correlation

function is constructed.

Antecedents to this work are found in Kubo et. al.(l),

Kitahara(l4) , Keizer(15) and N itzan et. al. ( 2 ) .  The present work

generalizes the results of the above papers.

5
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SECTION 2. UNIFORM THERW)DYNAMIC THEORY

In this section, we derive the uniform theory for thermo—

dynamic critical points of spatially homogeneous systems. The

• 
- ideas which arise here are very similar to the more complex ones

t
that arise in the kinetic case.

2.1. GENERAL THEORY

The thermodynamic theory proceeds from the Einstein

fluctuation-entropy formula. We assume that the entropy of the

system can be characterized by a parameter x. The equilibrium

entropy is S0 
= S(x0), Let

v(x)dx = Pr ~system reaches a state in which

x~ (x~x+dx)} 
. (2.1)

Then(9)

v(x)dx = c exp 
S(x)- 0 dx c exp [

~
] dx, (2.2)

where c is a normalizing constant. As is usually done, we have

• eliminated the time variable from the discussion of thermodynamic

problems(16). This elimination has certain conceptual drawbacks

when one tries to describe the time evolution of a system . How—

ever , we shall follow standard notation here. We also, follow the

standard procedure of dividing the universe into the sub-system

of interest, characterized by a variable y and certain intensive

6
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parameters (cz
~ . 

... cx1~) = ~ , and an external reservoir which is

assumed to remain in thermodynamic equilibrium(17, page 274). Then

v(y)dy = exp 

~~ 
dy, 

- 
(2.3)

where ~W (y) is the work done on the subsystem by an external source.

Let $(y,cz) denote the potential of the system, so that (with y=y0

denoting equilibrium):

~W ( y)  = 0 ( y , cz) — 0( y 0, c~) .  ( 2 . 4 )

Then

v(y)dy = c exp [~~~~~‘~~~]
dy . (2 . 5 )

Usually (9, 16,17) 0(y , ct) is expanded in a Taylor series, keeping

terms of second order

~ (y, cx ) = ~‘(y0
,a) + G ’ ( y 0 ,cx ) (y—y 0 )

(y 0, a) 2
+ ~~

“ 
2 (y—y0) + ... ( 2 . 6 )

At equilibrium $‘(y0,x) 0 and $“ (y 0, cz ) > 0. Thus we obtain

v(y)dy “ exp [_ 1 ~~ (y a)(y_y )2] dy. (2.7)

7
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Equation (2.7) gives a locally Gaussian deii ’ity with variance

2 kTa — ) . ( 2 . 8 )y0,ci

The Onsager-Machlup theory of irreversible processes(l8) proceeds

from this point.

Suppose, however , that there is a value ci=am such that

= 0”
~~

7
o~

C
~m
) = 0 $‘‘‘

~~
7
o~

cim) ~ 0. (2.9)

Such a point might correspond to a second order phase tran~i-

tion(2 ,9). A third term is needed in the Taylor expansion (2.6).

For ci near cim , instead of (2.7), one obtains

1_~ 0 ” ( y 0 ,ci) 2v(y)dy “ exp 2 (y-y
0
)

4’’ ’ ’ ( y 0 , ci) 
~ 1

+ 6 (y—y 0 ) dy . (2 . 10)

A simple change of variables converts (2.10) to

v(y)dy “~ ex~~[~~~ {z~
y 3 

— ~z(y) 
~ 

dz (y) , (2.11)

where z(y) is a regular function of y and ~ (ct) is a regular func-

tion of ci with the property that 
~
(czm) = 0. A density of the form

(2.11) is called an Airy density .

8
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At thermodynamic critical points, if $“ (y 0, cs) vanishes , then
usually $ ‘‘ ‘  (y 0 , ci) also will vanish. This can be shown by using

free energy arguments(17). Such will not be the case for kinetIc

equations , however.

It is also possible that at a different value of a ,ci=ci .

~“(y0, c i )  = ~ ‘ ‘ ‘ (y0, a )  0; $~~~~~(y0,a )  ~ 0. (2.12)

Such a point corresponds to a first order phase transition(2). We

take another term in the Taylor expansion (2 . 6 )  and obtain , for

ci near ci

1_ ~ •~
V
(y,ci) (y-y 0)

4 
$“ (y ,ci ) (y-y

v (y)dy ’~~exp 24 6

~“(y0
,ci) (y—y 0)

2 
~+ 2 

- (2.13)

Equation (2.13) can be put into the form

2
1 —1 z( )4 ci1(a)z(y) 1

v(y)dy “ exp L ~~ + 2 + a
2

(ci) dz (y).

(2.14)

In (2.14), z(y) is a regular function of y; a1,~ 2 are regular func-

tions of cx and vanish at cz=ct
~
. We call the density (2.14) a

Pearcey density . 
-

9 
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Equations (2.10,14) represent a formal extension of

Onsager ’s theory to critical point phenomena. In light of (1.4),

we are lead to totally nonlinear dynamics when a=ci~ or ci cim. Our

result is, of course , purely fprmal and is applicable to small

deviations from equilibrium only, which is the best that one can

expect of a thermodynamic theory.

2. 2. VOLUME FLUCTUATIONS OF A VAN DER WAALS GAS

As an example of the above analysis, we consider the volume

fluctuations of a gas at the liquid-vapor critical point, using a

van der Waals model. Levich( 17) shows that in this case

AW = P
0AV + AF, (2.15)

where P 0 is the equilibrium pressure of the reservoir. Expanding

AF gives

= + 
(
~~~
)T 

~~~ + 

~~~~~~~ 

(j~7)2

f~~
3F\ CAy ) 3 f a 2F\  (A V) 4 

2+ 
‘~~
1T 

6 + 

~~
7T 

24 ( .16)

where AV = V-V0 is the deviation from the equilibrium volume .

Usually,  only two terms are of (2 .16)  are used . If we set

~~~~~~~~~~~~~~~~~~~~~~~~

10 
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= l ( :P ~~ V)~~I (2 17)

The value of E (AV) becomes infinite at T=T . The cause of thec

divergence is purely mathematical: only two terms of the expansion

were used. At the critical temperature(17)

(~~)T~ 

= 

(
~~~
)T

~ 

0 but 
(
~~~
)T
~ 

~ 0 (2 18)

Then (2 .16)  becomes —

= _ (i~ç~ 
(~~~) 4 

(2.19)
\~v ‘T

Equation (2.19) is general. We now specialize to a van der Waals

gas, for which

‘2 ,0
V—b 2~~V

The conditions (2.18) lead to the following values of the critical

parameters:

= 
27bR V~ = 3b 

C 27b2 
(2.21)

11
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—

Then

f~
3p\ - — . 0123457a

—
~~~ 

— 

b5 
• (2.2 .2 )

Then we obtain

v(AV)d(AV) = c exp [_ ~~~~~~4] d (A v ) , ( 2 . 2 3 )

where c is the normalization constant . Hence we obtain

E ((AV) 2) = 

f x~exp dx

f exp 
[~~~

T
~] 

dx

/kT \ l/2 f ~ y
2e

_Y4/24 dy
= 

. (2.24)

e~~
7
~
/’24 dy

Thus , the van der Waals theory (i.e. the classical theory , see
2 1/2

- , below ) predicts E ( ( A V )  ) T
~ 

- In Table 1, we give the results
of calculations of E ((AV) 2) for a number of gases. The above

theory yields values of E ((A V) 2
) which are large , but not infinite.

12
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The thermodynamic theory presented in this section is a

“classical” theory (l9) and thus will not predict the “correct”

critical exponents. This is a fault of the use of thermodynamic

theory per se. It is not clear how the thermodynamic theory given

above could be modified to yield the correct exponents.In a recent

work Mou et. al.(34), using the master equation, also derived

the classical result.

TABLE 1

VOLUME FLUCTUATIONS AT THE CRITICAL POINT

Gas V (cc/mole)* E ((Av)
2
)/v

He 57.6 4.416x102

H2 65.0 4.336xl02

N2 90.0 4.832xl02

CO 90.0 5.060x102

02 74.4 4 .702xl0 2

C2H4 127.5 5.168x102

a CO2 95.7 5.l47xl02

NH3 72.4 6.780xl02

H 20 45 l.187xl0 2

*from (20 , page 18)

13 
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• 
SECTION 3. STOCHASTIC KINETIC EQUATIONS, DIFFUSION

APPROXIMATION AND FOKKER-PLANCK EQUATION

The thermodynamic theory of §2 can not be used to treat

highly nonequilibrium kinetic phenomena , which are of interest in
“Imany areas of chemistry, physics and biology . Let x ( t )  denote the

statistical variables . Oft en we can postulate an equation for the

mean value of ~ (t), x(t):

dx1 i i j
= b (x ,ci)  x (0)  = x0 

=

= ... (3.1)

In order to treat f luctuations , we need to know the kinetic equa—

tion that ~ (t) satisfies. Ideally , we would start with the

Liouville equation and derive the kinetic equation. Such a deriva-

tion is possible for only the simplest system(33). Instead, we

shall use a generalization of the Langevin method. We will add

a zero-mean stochastic term to (3.1). The stochastic function

~ ( t )  is characterized by a microscopic time scale, r , small coin—

pared to the macroscopic scale on which measurements are made.

Hence

At = n
2At (3.2)

14 
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• where ri is a small parameter. We will not assume that has a

6-correlation function and let

1
k1 

= f E(~~ (s)~~~ (O)) ds.

We assume that ~ (t) = ~~~(t)  satifies the stochastic kinetic

equation

= b’( )  + ~~ f~~~~ )~~~(t/fl
2) (3.3)

In equation (3.3), c is a small parameter characterizing the size

of the system and related to the intensity of the fluctuations

(1,2,13,15). Hence c-.0 corresponds to the thermodynamic limit.

The field f~~(x) is a given deterministic field. Ideally, one

would like to calculate f~ horn basic principles. Since (3.3) is

somewhat ad-hoc, a prescription is needed for the calculation of

f~ . (One such prescription is the fluctuation—description theorem.

Another is given by Keizer(22)). As ri- 0, x~ (t) -. x(t), a diffusion

process (22). We set

u(x) = 
~~~~~~~~~~~~~~~~~ 

= . (3.4)

Then u(x) satisfies

- au Ca 3 
______  + bi 1

~ç + ~~~ ~~~~~~~~~ E Lu (3.5)

- 15
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In (3.5), we use the convention that repeated indices are summed

from i t o n a n d

a~~ = 

:~~~~~~~~~~~~~~~~~~~~ 

+ T: (3.6)

C = 1  
~~~~~~~~~~~~~~~~ 

. (3.7)
ax-’ 3x-’

On the other hand, if has a 6-correlation function (white noise),

then we obtain

au= ~~~ a2u i ~u
2 • + b . (3.8)

ax ax ax

Numerical work(3) indicates that if the boundaries are non-singular,

then equation (3.5) and (3.8) yield equivalent solutions for C(.l.

We also note that equation (3.3) is a stochastic equation

with correlations and hence is a more reasonable representation

then a white noise equation. 1~urthermore , equation (3.5) [or (3.8))

is derived rigorously--no expansion procedure is needed (compare(ll)).

Equation (3.8) is the backward equation. Usually , in the physical

literature the forward or Fokker-Planck equation is used. This

equation can not be derived rigorously . No expansion procedure

will rigorously give the Fokker-Planck equation(1,ll). Instead,

we Will obtain the Fokker-Planck equation by using the theory of



I

partial differential equations. In (24, 25) it is shown now this
.

- - 

can be achieved. Let

v(x,t)dx = Pr{x<’
~ (t)<x+dx} 

. (3.9)

- Then v~x,t) satifies (at least weakly) the adjoint equation

= L* v = .
~ (a

1Jv)~~ — (b1v)1 
— c(c1v)~~. (3.10)

In the derivation of (3.10), thei~e is a question of boundary terms

- 
- for u, v as x I + c o ( 2 5) . For the problems considered here these 

- 
-

questions are relatively unimportant. In (3.10) subscripts in—

dicate differentiation.

I, 
-

1 - 

-
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SECTION 4. CANONICAL DENSITIES

In this section, we consider the time independent, one -
dimensional Fokker-Planck equation

(av)
C — (bv)

~ 
= 0 (4.1)

subject to

J v(s)ds = 1 lirn v(s) = 0. (4.2)
J-co

The solution of (4.1,2) gives the steady state (but not necessarily

equilibrium) density for a process satisfying (3.3). Our results

are valid for C-~0 (“thermodynamic limit”) and generalize the

thermodynamic results of §2. In later sections, we generalize the

solutions obtained here to solve time dependent, multidimensional

problems.

When (4.1) is integrated twice and (4.2) is applied , we find

v(x) = k [ex~ {f X 
~~~~ ds

}] 
, (4.3)

where k is the normalization constant

k = i: exptf’~ ~~ ds} dx.- (4.4)

I 
_ _ _  
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• The main contribution to (4.3) comes from the maximum of the

- - function

~(x) =f ~~~~~~ ds. (4.5)

- . We now assume that there is a steady state (i.e. b(x)=0 has a

solution) , x
0. The steady state is classified according to its

dynamic behavior.

The normal type steady state x0 is characterized by

b(x0
) = 0, b’(x0) ~ 0. (4.6)

We are interested in stable steady states, so that we assume

b’ (x0) < 0. Thus , per turbations from x0 decay exponentially.

When ~(x) is expanded about x0, we obtain:

I — Ib ’ (x0
) I (x—x 0 ) 2

v(x) “~ k Ca(x0
)

- 
- 

I ~ - I b ’ ( x ) I ( x - x 0 ) 2
~ 1

- 

+ 0 

[
exP 

~ ca (x0) ] . (4.7)

Thus , we obtain a locally Gaussian density,  for small C. This
• result has also been derived by Kubo et. al.(1) and Keizer(23) by

di fferent arguments. it is the. standard result in the theory of

nonequilibrium thermodynamics (18). -

- 
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In the marginal case, b depends on one parameter ci such

that when ci = cxc the marginal type steady state satisfies

b(x0s cz~
) = 0 b’(x

01 c x )  = 0 b”(x
0
,c x )  ~ 0. (4.8)

The canonical dynamics corresponding to the marginal case are (4)

2x = x - cx. (4.9)

The flow of such dynamics is sketched in Fig. 1. We need to re-

place the conditions (4.2) by:

X
F

u r n  v(s) = 0, J v(s)ds = 1 (4.10)
-~~~

where xF < ~ is an end value for x (see also 3).

Since b ’ ( x 0
,cx ) = 0, the expansion used to obtain (4.7) breaks

down. Hence the Gaussian density breaks down. In particular,

from (4.7) we have

E(x2) l/lb’(x0
,cx l . (4.11)

• Thus, when ci = cxci the Gaussian density yields an inf inite

variance. This is, of course, a purely mathematical divergence

and has nothing to do with the physica l problem. We take an extra

term in the expansion of •(x,cx) to obtain

20
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• 
~ 
b’ (x 0 , cx ) (x—x )2 b” (x ,ci) (x—x

v(X) ~ k exp L ca(x0) 
0 + 3ca 

0 ] (4.12)

A change of variables converts (4.12) to the Airy density (2.11).

The critical type steady state is characterized by two

parameters , ci ,~~ such that when ci = ci and ~ =

b (X01 cx ,~~~) b’(x
0,c x $ )  = b” (x0 ,cx ,B ) C

b’ ’’ (x0,ci ,8 ) ~ 0. (4.13)

The canonical dynamics of a critical type dynamical system are (4)

x = ± x 3 + c ix +~~. (4.14)

In this case cxc = = 0. The flow of (4.14) is skeched in

Fig. 1.

It is clear that the Airy and Gaussian densities both break

down when cx = cx and ~ = In this case, we take one more term

in the Taylor expansion of ~(x) and obtain the Pearcy density (2.14).

The results of this section can be obtained by direct use of

Levinson ’s theorem (26). It is clear that the Gaussion approximation

will be valid whenever Ib’ (x0,cx)/b”(x0,ci)I>>l.
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STATES WHEN A PARAMETER ci > 0, ONE DEGENERATE STEADY
STATE WHEN cx = 0 AND NO STEADY STATES WHEN ci < 0.• B) THE CRITICAL TYPE DYNAMICAL SYSTEM HAS THREE
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SECTION 5.

TIME DEPENDENT , MULTIDIMENSIONAL FOKKER-PLANCK EQUATION 
-

In this section , we construct regular solutions of the time

dependent Fokker-Planck equation (3.5). Since Ludwig(5) has given

- - the construction for the normal case, we only consider marginal 1 -

and critical type steady states. Our goal is to construct densities

that have finite second moments. Exact definitions of marginal

and critical type steady states in multidimensional systems are

given in Appendix A .

5.1. MARGINAL TYPE STEADY STATE

We seek a solution of (3.5) of the form

v(x,t) = exp [
~ 
(~~

(xi t)
3 

- ~ ~,t~)] 
n~~ 

CnZn (X ,~~).

(5.1)

The form of (5.1) is a “ray ansatz”(27). In it, ‘~‘(x,t), cx, and

the functions z0(x,t),z1(x,t)... are to be determined. In practice

we are often interested in just the first term of (5.1). After

derivatives are evaluated, terms are collected according to powers

of C. We obtain

]
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0 = exp 

~ 
(~~ — ~~11

)] /C + b~ ’F1

+ (~ - 

~~~~~~~~~ 

z~ (~ - ~2) + exp [_~
(
~ - ~)] {b~ 3z0

+ b
lz? + a , ij  Z0 + 

~~~~~~~~~~~ (~ - )~~ z~ (5.2)

z~ + ~~~ (_2~~~~~
z° + (~ — ~~) ~~~~~

+ 2(~ — ~lI
2)~Y~z?) — c~~(~~ — ~p2)~p 0

)}

The leading1 coeff icient of C vanishes if

+ b”~ + 
~~ 

~~~~~~~ = 0 (5.3)

Equation (5.3) is a generalized eikonal equation(3). In the rest

of this paper , we shall assume that the ini tial data for v are

concentrated at a point

v (x,0) = ô (x — x0) (5.4)

• At the deterministic steady states, N,Q (see Fig. 2) we expect

that d)Y/dt = ‘1’~ + b1’P
~ 

= 0. We set ‘V2 =. at those points. The

I 

- 
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• FIG. 2: A TWO DIMENSIONAL MARGINAL DYNAMICAL SYSTEM IN A DOMAIN D
- IN R2. WHEN ci < 0 THE DETERMINISTIC FLOW IS ALWAYS ACROSS

D, A PROBLEM FIRST STUDIED BY LEVINSON (28 )
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- 
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node N should correspond to a local maximum for v (x ,t). Hence

we set ‘V(N) = %/~~~ . Similar reasoning leads to ‘V (Q) =

The value of a is still underterinined. It can be obtained

by the following iterative procedure(3). (If higher order terms

are to be considered, then it is necessary to expand

~~ 
C~~~ . In that case, all of the parameters are determined

k=0

in a manner analogous to the determination of ~) .  We start at

the node N, where ‘V =%1~~~ , the first estimate for ~~~. Equation (5.3)

can be solved by the method of characteristics(l2) .The characteristic
equations are :

1 (5.5a)

b’ + (~ — 4Y 2 )p ~~a1J (5.5b)

d’V dxk l~~ 2 i j
= 

~k ~~~~~~~~~ 
= ~- ( cx  - ‘V )a p

~
p
~ 

(5.5c)

_
(2pk

i_
~J1a

i
~pjpj + b

~k
pi + ~~ ‘V a~~pjp~) 

. (5.5d)

Initial data is given on an ellipsoid surrounding N. As x~Q, the

value of ci should approach - . If it does not , then a new

estimate is needed. Elsewhere, we have shown that iterates

of can be determined by using the method of false position and

that a is a regular function of the deterministic parameter cz(3).

26
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• When N and Q coalesce (Fig. 2b), = 0. After the annihilation

of N,Q (Fig. 2c), ~ < 0. The stochastic problem for a dynamical

system similar to Fig. 2c is an old one , solved by Levinson(28)

• and Veritcel and Friedlin(29). Consequently , we restrict ourselves

to the dynamic cases represented by Figs. 2a,b.

From (5.5b) , we see that if ‘V
2 

= cx on a trajectory , then

dx’/ds = b’, so that the trajectory is a deterministic trajectory.

In this way, we will be able to estimate deviations from a given

deterministic trajectory . When (5.3) is differentiated with

respect to and evaluated on a trajectory we find:

+ b~~ ’V~ + ~~ a
iJ

’Vi’Vj’Vk 
= 

k = 1, 2 , ... n 
(5.6)

In (5.6) the (—) sign corresponds to trajectories that enter N ,

the (+) sign to trajectories that enter Q. At either of the steady

states, we obtain

b~ k ’1/ k ;4~~a
iJ
~V .’V .’Vk = 0 

k = 1, .. (5.7)

Equation (5.7) can be solved to yield values of ‘Vk at N or Q.

When N and Q coalesce , so that ci 0 and conditions (A) hold ,

it is possible to show that the ‘
~k 

can be calculated. For example ,

27 
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• consider the case of only one spatial dimension. Then (5 7)

becomes:

bi~ 
— ‘V (N)a’V~ = 0 (5.8)

or

‘V~~(N ) = 
‘V(N)a (5.9)

In obtaining (5.8,9), we have rep1aced~~~~by ‘V (N). When N ,Q

coalesce, b
~

-9-0 and ‘Y (N)- ’-O . One application of l’Hospital’s

rule gives

b , (N)
‘V~~(N)  = ~

)
(
C
N ) . (5.10)

A similar , but more complicated , calculation holds in the multi-

dimensional cases(3).

Thus far, we have given our construction without any boundary

conditions. In order to determine z0, we need to specify the

boundary conditions. As time progresses, the process will tend to

concentrate (if it is still in D) near D1. (Fig. 2).

The o(exP(~ (~~ - a~P )))term in ( 5 .2 )  yields a “ transport”

equation for z°(25, 27). It takes the form

- ~~
— + f ( s ) z 0 

= 0, 

• • 

- (5.11)
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i.e.

z°(s) = z0(O)exP [_f f(s )ds] 
• 

(5.lIa)

When the ini tial data is concentrated at a point , Ludwig has shown
that the appropriate ini tial data for z is z°(O ) = constant.

5.2. CRITICAL TYPE STEADY STATE

For the critical type steady state , instead of (5.1), we

seek a solution of (3.5) of the form

v(x,t) = exp 

~~ 
(~ ‘V~ — — £~z~ (x,t). (5 . 12)

In this case, it is possible to impose the conditions on v(x,t) that

v÷0 as I x I + OD , f v(x,t)dx = 1 (5.13)

and take all of Rn as the domain of interest. Instead of (5.3),

we obtain

• • i j
‘Vt + b1’P~ + ~~~~~

— (‘i’s — ~~‘V — B) ‘Vi~V j  = 0. (5.14)

The value of ‘V at the deterministic nodes N1,N2 and saddle Q

(Fig. 3) is determined in a manner analogous to the one used in

§5.1. The values of the parameters are • also determined in a

29
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similar fashion. It is possible to show that all constructions
- 

remain regular as the steady states coalesce(3). The function

z°(x,t). can also be determined in manner analogous to the previous

case.
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FIG. 3: A TWO DIMENSIONAL CRITICAL TYPE DYNAMICAL SYSTEM
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SECTION 6. CORRELATION FUNCTIONS FOR CRITICAL TYPE SYSTEMS

In many physical problems , the object of interest is the

correlation function

= E -~~ (t) ~ (t + -u ) )  (6.1)

= ffxx 1Pr {~~(t)f~(x,x + dx), ~(t + T)c(x1,x1 + dx1)}dxdx
i.

Since the prc~cess in our prob lem is assumed to be stationary ,

R(t) = E 
{~~(0 )~~( T)}  . Now we consider the conditional correlation

function :

R~~~
(t) = E 

{~~
(0 )~~(-u) j~~( 0 )  = . ( 6 . 2 )

If v
0

(x
0

)dx
0 

the initial density for x0, then we clearly have

R ( r )  = fR (T)V
0
(x

O)dx0
. (6.3)

However ,

R (t) = f x1Pr {~~( T ) ( ( x 1,x 1 
+ dx1) ~~(0) = x0} dx

1

= f ~l vx (x’,T)dx
1, (6.4)
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where V (x 1,t)dx1 was calculated in the previous section. Thus

R
:

( T )  = ! x 1 exp [-
~ 

( ‘V (~~~~T) 4
)_  ~~ 2 

- 

~
‘V]z (x,T)tdx ( 6 . 5 )  -

x(0) = x0

Namely ,  we start the ray calculation at x = x0 and integrate the

ray equations

= 1 = b1+’V
3a~~p~ . (6.b)

d’V dx ~k ii i= 
~~~~~~ ~~~~~~

— 
~~~

-
~~

--- = -(3a 
~i~ j~ k 

+ bl kpi

1)

+ ~~ 
_—~~-!~~ ~~~~~~ (6.7)

until s = T. Thus (6.5) can be evaluated. The full correlation

function, obtained from (6.4) is

R(t) = If x’ exp [-

~ 
(~~

x~T)
4 

- 
~~ 2

_~‘V]z
0(x1i v

0(x0)dx
1dx0. (6 . 8)

x ( 0 )  = x0 
—

In the next section, we give an example of such a calculation.
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SECTION 7. CRITICAL HARMONIC OSCILLATOR

In this section , we consider a modified Duffing osci11ator~3O)

in contact with a heat bath(13,3l). We shall use a stochastic

equation of the standard “mode-mode” form, but initially will

indicate how a more general analysis would proceed .

The Hamiltonian of the system is

H = 
k(n)x2 + + + tI

~j fl~ 
(~ ,x) + . (7.1)

In (7.1), 
~int (~~~~ 

,x) is the interaction potential of the oscillator

with coordinates (x,p) and heat bath with coordinates (r’,p.). The

last term represents the kinetic energy of the heat bath. The

motion at the full system (oscillator + heat bath) is generated by

- aHx = - ~~ p = - - ~~ (7.2)

i aNr = — p — —‘— i = 1 , . . . N
1 ar1

The motion of the entire system occurs on a manifold in the phase

space given by H = E, where E is the initial (i.e. constant) energy

of the system. This manifold , M, will be bounded and compact.

We - expect that the full system is ergodic(32). We are

1interested in a submanifold of M, M , which is the manifold of

i_I_ _i 

- 

—5- -- 

~
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(x,p) coordinates. A possible projection operator from M to

is 

~~~~~~~~~ .. r~ , p1, . .p ~~ = {x iPiO~ ... , o } . (7.3)

Namely, we project from M+M . On M , we assume that the follow—

ing measure exists

~ (t,x,p,A) = Pr

+ dx), ~ (0)~~(p,p + d~)}. (7.4)

We have introduced ~ (t), ~ (t) as random variables. This is a

result of the elimination of (~~~ 
,~ ) from consideration. By

averaging , we are treating the latter variables as random; thus

x,p become random variables

Next , we assume that if ~‘(t )  = x, ~~(t) = p, then

u r n  
~~ 

f (~ - x) ~~ Ct  + At ,x,p,dx,dp) = p/rn ~7.5)A t-~-0

lim 
~~~~~~ 

f (~ — p) P (t  + At ,x ,p, dx ,dp) =
At-’-O

-k(~ )x - ax 3 - y(x)p (7.6)

u r n  ~f (~ - p) 2 
~ (t + At,x,p,dx,dp) = C a , (7.7)

At+0
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and that all other moments are zero. These assumptions have yet

to be verified for any but the simplest system(33) . These assuxnp—

tions lead to the Langevin equations

= p/rn (7.8)

(7.9)

where ~ (t) is an approximation to Gaussian white noise (e.g. (22),

page 651).

The Fokker-Planck equation for the density f(t,xp) is

Eapf — — ((_k (~ )x — ax3 — ~P) f)~~ = , (7.10)

• where (see §3)

= f E~~~(s)~~(0))ds . (7.11)

The equilibrium density is (13~~ = kT)

~eq 
= exp [_8(~~ + k(n )x + . (7.12)

— We require that 
~eq 

be a solution of (7.10) and obtain (the

“fluctuation-dissipation” result):

C cLP = 2kTy. 
- (7.12)
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The steady states of the averaged equations (7,8,9) are

p 0 x = 0 , ± i ~f 1~ ( n) I~ (7.14)

where we have made the assumption that k > 0, cx > 0.

We assume that when ii = 
~c’ 

k(r1
~
) = 0. Then (0,0) is a critical

type steady state. At 
~ 

= 
~~~~~

‘ 
we have a critical harmonic

oscillator.

We now nondimensionalize (7.9). We let C = ~~ <<1 be aE 0
small parameter , where E0 is some reference energy . Introducing

dimensionless variables by

V = 
1%! 

_
~~- v’ x = ~~~ Om x’ t = ( 7 .  15)

~ k’ = 3/2 y(x) =

~JE0m (E
0
rn) 0

equation (7.9) becomes (with v E p/rn)

= C Y ’fv~vi 
— (V ’f )

~~,

• 

- ((—k ’x ’ - a ’(x ’) 3 — 
~~~~~~~~~~~~~~~~~~~~~~~~ (7.16)
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In the sequel, we drop the primes in (7.16). Since k’ k, when
= 

~c’ 
k’ (i-i ) = 0.

We now seek a solution of (7.16) of the form

f(t,x,v) = exp [-
~ 

(~~~4 
- !~~-~~-~~~ - B

~)]EC~
z’
~
(x
~
t) (7.17)

where ‘V ,cx,~ and z~ are to be determined. Following the procedure

in §5 , we obtain

+ V’V - ( k ( r i ) x  + ax 3 
+ yv) ‘IJ

~

+ y(’!’3 — cx’!’ — B)’Y~ = 0. (7.18)

Let us now specialize to 
~ = 1c~’ 

k = 0; i.e. the critical
— 

harmonic oscillator. Then cx = B = 0 in (7.17)and (7.18). The

ray equations become

• dx dv 3 3
~-E = -cxx _ y v + 2 y W ~ ’V

~~~~= V ’V +~~~~ ‘Vv + ’ Vt

(7.19)
d’V

= -6 ’V~~~’ q ~~ - 3~x
2
’ç,

d’V~ 3 2
• ~~~~— =  — 6’V~ ’V - ‘ V +

38
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By integrating the ray equations from an initial point ~ (t0
) = x0

,
- 

v(t
0
) = v

0
, we obtain the conditional density f(x,t,v ,x0

,v
0). Then

following the procedure in §6 , we can obtain the correlation

- function. Our solution thus allows the calculation of correlation

functions at critical points. Once the correlation function is

• known, we obtain the spectrum of the oscillator by Fourier

transform.

I
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* 
- APPENDIX A

- 

- 
MARGINAL AND CRITICAL TYPE DYNAMICAL SYSTEMS -

• In this appendix, we give exact conditions for marginal and

critical type dynamical systems. Our work generalizes the scheme -
;

of Kubo et. al.(1973).

MARGINAL TYPE DYNAMICAL SYSTEMS

The deterministic evolution of the macrovariables is

governed by

x = b(x,~~) (A.l)

where r~ R
1 is a parameter. Equation (A.l) may have three steady

states, Q0
(~ ), Q1(~ ) and P2. Let Bk be the matrix (b

’,.)

evaluated at Q0, Q1 or P2 (k = 0,1,2). We assume that:

• For all values of n, B2 has two real negative eigenvalues .
Although P2 may depend upon -i, P2 is always bounded away from the

other steady states.

• As r~ + 0, the distance between Q0(r!) and Q1(r~) decreases.

When ~ = 0 , Q0 and Q1 coalesce and annihilate each other (i.e.

when ~ < 0, (A.1) has one real and two complex steady states).

• When n > 0, B0 has two real negative eigenvalues and B
1

• has one real positive and one real -negative eigenvalue. When

= 0, b = B has one zero and one real negative eigenvalue. The0 1

A-l
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t
eigenvector corresponding to the negative eigenvalue has positive

slope. The double point Q0(0)/Q 1(0) is called a saddle node 
(3).

A deterministic system satisfying the above assumptions will

be structurally similar to the system sketched in Fig. 2.

The above conditions can be reformulated by a change of

coordinates. Define the y1 axis in the direction of the eigen—

vector of the non-negative eigenvalue of B1. The y2 axis is in

the direction of the eigenvector of the negative eigenvalue of

B1, with the origin at Q1. Then

y = b(y,~~) (A.2)

is the deterministic system in the new coordinates. The system is

of the marginal type if:

1) det(b ,.(Q1,0)) = 0

2) b ,1(Q1,0) = b ,1(Q 1, 0) = 0 (A.3)

3) b 2,2 (Q1,0) ~ 0

4) b 1,11 (Q1,0) — 
‘

~~ 

2
,11(Q1,0) ~ 0.

The conditions (A.3) have the following interpretation . Condition

1) indicates that the original system has a zero eigenvalue.

Condition 2) indicates that when ri = 0 the linear dynamics in the

A-2
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y’ direction vanish , condition 4) indicates that these dynamics

are quadratic. Condition 3) indicates that the second eigenvalue

is non—zero. 
-

CRITICAL TYPE DYNAMICAL SYSTEMS -

The macrovariables evolve according to a deterministic

kinetic equation 
- 

-

b(x,n, S) (A.4)
-f
I

where n, ô are one dimensional parameters. The entire bifurcation

set of equation (A.4) is still unknown (3). The

physical systems of interest here motivate the following

assumptions :

• For some values of r~, S , (A.4) has three steady states

P
0
(~ ,~~), P1h,~~ and P2(~~,~~).

- If = (b1~~ ) evaluated at ~k’ 
then when

the three steady states are distinct, B0 and B2 
have real negative

eigenvalues. B1 has one real negative and one real positive
I
I

eigenvaiue. The eigenvector corresponding to the negative eigen—

value has positive slope.

• As r~, ô vary, two of the steady states may coalesce and

annihilate each other. This behavior is analogous to the
• 

marginal bifurcation . •

A-3
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• As r~, 6 vary , all three steady states may move together

and coalesce when n = 6 = 0. At the critical bifurcation ,

B1 = (b~~.) has a zero eigenvalue. We assume that the steady

state remaining after the critical bifurcation is a stable steady

state. 
-

A deterministic system satisfying the above postulates will

be structurally similar to the one sketched in Fig. 3.

The above properties can be restated in terms of a new

coordinate system as follows. The y1 axis is in the direction of

the eigenvector of the non negative eigenvalue of B1. The y2

axis is in the direction of the eigenvector of the negative

eigenvalue , with the origin at P1. The deterministic evolution

is then

y = ~ (y,ri, 6). (A.5)

A dynamical system is a critical type system if:

1) det(~
1
~~~(P1~01 0)) = 0

2) ~ 
1
,1(P1,0,0) = ~ 

2
,1(P 1, 0 ,0)

I 
• 

= ~ 
l (p ,0 ,0) = ~ 

2
,11(P1,0,0) = 0 (A .6)

3) ~ 
2
,2(P1,0,0) ~ 0

- 

~~l “24) b ‘111 
— b 

~~~~ 
0. -
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These conditions have the following interpretation 1) indicates - 
-

that the system has a zero eigenvalue, while condition 3) indicates

that the second eigenvalue is non-zero. Condition 2) indicates

that the linear and quadratic dynamics in the y1 direction vanish ,

while 4) indicates that the dynamics are cubic. -

li( 
•

t -

: 
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